Visit our Web Site Caring Right at Home
spacer
Order Copies for Your Event 
spacer
Send to a Friend
spacer
Subscribe Now
Recommended Links   October 2008 
Search for Care
by City, State
or ZIP Code

Visit our
Homecare Blog


Providing a website featuring publications in the nature of blogs, articles, and brochures in the fields of home health care services, non-medical personal care assistance with activities of daily living, and disease maintenance.


Researchers Find Connection Between Caloric Restriction and Longevity

Scientists at Harvard Medical School, Cornell Medical School, and the National Institutes of Health have discovered how caloric restriction enables cells—and many higher mammals—to live longer and healthier lives. Understanding this process provides the foundation for creating drugs that treat age-related diseases.

Cell
For nearly 70 years, scientists have known that caloric restriction prolongs life. In everything from yeast to primates, a significant decrease in calories can extend lifespan by as much as one-third. But getting under the hood of the molecular machinery that drives this longevity has remained elusive.

Now, reporting in the September 21 issue of the journal Cell, researchers from Harvard Medical School, in collaboration with scientists from Cornell Medical School and the National Institutes of Health, have discovered two genes in mammalian cells that act as gatekeepers for cellular longevity. When cells experience certain kinds of stress, such as caloric restriction, these genes ramp up and help protect cells from diseases of aging.

"We've reason to believe now that these two genes may be potential drug targets for diseases associated with aging," says David Sinclair, associate professor of pathology at Harvard Medical School and senior author on the paper.

The new genes that Sinclair’s group have discovered, in collaboration with Anthony Sauve of Cornell Medical School and Rafael de Cabo of NIH, are called SIRT3 and SIRT4. They are members of a larger class of genes called sirtuins. (Another gene belonging to this family, SIRT1, was shown last year to also have a powerful impact on longevity when stimulated by the red-wine molecule resveratrol.)

In this paper, the newly discovered role of SIRT3 and SIRT4 drives home something scientists have suspected for a long time: mitochondria are vital for sustaining the health and longevity of a cell. Mitochondria, a kind of cellular organ that lives in the cytoplasm, are often considered to be the cell’s battery packs. When mitochondria stability starts to wane, energy is drained out of the cell, and its days are numbered. In this paper, Sinclair and his collaborators discovered that SIRT3 and SIRT4 play a vital role in a longevity network that maintains the vitality of mitochondria and keeps cells healthy when they would otherwise die.

When cells undergo caloric restriction, signals sent in through the membrane activate a gene called NAMPT. As levels of NAMPT ramp up, a small molecule called NAD begins to amass in the mitochondria. This, in turn, causes the activity of enzymes created by the SIRT3 and SIRT4 genes—enzymes that live in the mitochondria—to increase as well. As a result, the mitochondria grow stronger, energy output increases, and the cell’s aging process slows down significantly. (Interestingly, this same process is also activated by exercise.)

"We’re not sure yet what particular mechanism is activated by these increased levels of NAD, and as a result SIRT3 and SIRT4," says Sinclair, "but we do see that normal cell-suicide programs are noticeably attenuated. This is the first time ever that SIRT3 and SIRT4 have been linked to cell survival."

In fact, the mitochondria appear to be so essential to the cell's life that when all other energy sources inside the cell—including the nucleus—are wiped out, yet the mitochondria are kept intact and functional, the cell remains alive.

SIRT3 and SIRT4 may now also be potential drug targets for diseases associated with aging. For example, in recent years scientists have become increasingly aware of the importance of mitochondrial function in treating diseases such as cancer, diabetes, and neurodegeneration.

"Theoretically, we can envision a small molecule that can increase levels of NAD, or SIRT3 and SIRT4 directly, in the mitochondria," says Sinclair. "Such a molecule could be used for many age-related diseases."

According to Suave of Cornell, "This study also highlights how advanced technological methods can help resolve fundamental biological questions in ways that were hard to achieve as recently as a few years ago."

This study is supported by the National Institutes of Health and the Paul F. Glenn Laboratories for the Biological Mechanisms of Aging. Sinclair and Suave are consultants to Sirtris Pharmaceuticals, a company aiming to treat diseases by modulating sirtuins. Sinclair is also a cofounder of Sirtris Pharmaceuticals and sits on their advisory board and board of directors.

Read More

The National Institute on Aging’s Spotlight on Aging Research recently released a related study, "Scientists Weigh Mechanisms, Effects of Calorie Restriction," reporting on more ongoing studies and its relevance to aging research.

line



Right at Home is a national organization dedicated to improving the quality of life for those we serve. We fulfill that mission through a dedicated network of locally owned, franchised providers of in-home care and assistance services.


<<Previous ArticleNext Article>>
Bookmark and Share
Facebook IconLinkedIn IconTwitter IconTwitter Icon
Print This Article
Print This Issue
Article Library
 This Issue
Geriatric Care Management Solutions
Researchers Find Connection Between Caloric Restriction and Longevity
Americans Often Fail to Discuss Memory Concerns with Their Healthcare Providers
Sandwich Generation Should Prepare for Needs of Senior Loved Ones
October 13-19, 2008 is National Aging in Place Week
 Archives

2014 (hide list)

    10/01/2014

    09/01/2014

    08/01/2014

    07/01/2014

    06/01/2014

    05/01/2014

    04/01/2014

    03/01/2014

    02/01/2014

    01/01/2014

2013
2012
2011
2010
2009
2008
2007
2006